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Many properties of atomic nuclei were described in terms of the statistical level density, ρ, for large 

excitation energies U at a thermal equilibrium with temperature T [1]. The nuclear level density ρ(E,Q) was 
derived within the micro-macroscopic approximation (MMA) for a system of strongly interacting nucleons 
with the energy E  and additional integrals of motion Q [2,3]. Within the extended Thomas-Fermi (ETF) 
approach and semiclassical periodic-orbit theory (POT), beyond the Fermi-gas saddle-point method we 
obtain  𝜌! ≈ �̅�𝐼"(𝑆)/𝑆",where  𝐼" 	is the modified Bessel function of the entropy S of order ν, and �̅� is a 
constant independent of S. For small shell-structure contribution, one finds 𝜈 = 𝜅/2 + 1, where κ is the 
number of additional integrals of motion. This integer number is of a dimension of Q, Q = (N,Z,…) for the 
case of atomic nuclei. Here, N and Z are the numbers of neutrons and protons, respectively. For much larger 
shell structure contributions, one obtains ν=κ/2+2. The MMA level density ρ reaches the well-known Fermi 
gas asymptote [1] for large entropy S (large excitation energy U), and the finite micro-canonical 
combinatoric limit for low entropy S (low excitation energies U→0), see Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Additional integrals of motion can also be the projection of angular momentum 𝑀 of a nuclear 

system for rotational of deformed nuclei [2,3]. Fitting the MMA total level density, 𝜌, for a set of the 
integrals of motion, 𝐐 = (𝑁, 𝑍,𝑀), to the experimental data for  low excitation energy states in a nucleus, 
one obtains the results for the inverse level-density parameter 𝐾 = 𝐴/𝑎, where 𝑎, is the level density 

 
Fig. 1. The MMA level density 𝝆 (solid line in units of 𝝆") is shown as function of the 
entropy 𝑺 for different approximations: 1) 𝑺 ≪ 𝟏 (red dashed line) at quadratic order 𝝆 ∝
𝟏 + 𝑺𝟐/𝟏𝟒 +⋯; 2) 𝑺 ≫ 𝟏 «1», «2», and «3» for  expansions, up to zeroth, first, and 
second-order terms, respectively, in the square brackets of: 𝝆 ∝ 𝐞𝐱𝐩(𝑺) 1𝟏 − 𝟑

𝑺
+ 𝟑

𝑺𝟐
…4. 
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parameter 𝑎, and 𝐴 = 𝑁 + 𝑍. For the entropy	𝑆, one obtains 	𝑆 = 2(𝑎𝑈)#/% where 𝑈 = 𝐸 − 𝐸& − 𝐽𝜔%/2, 
𝐸& = 𝐸'() + 𝛿𝐸, 𝐸'() is the smooth ETF energy part, and 𝛿𝐸 is the energy shell correction to the 
background energy 𝐸&. Similarly, one has 𝐽 = 𝐽'() + 𝛿𝐽 as the corresponding decomposition for the 
moment of inertia 𝐽. The shell corrections 𝛿𝐸 and 𝛿𝐽 determine the oscillating part 𝛿𝑆 of the entropy 𝑆 
through the shell corrections 𝛿Ω to the generalized grand-canonical potential Ω with a similar 
decomposition Ω = Ω'() + δΩ. Within the semiclassical periodic-orbit theory at thermal equilibrium with 
temperature 𝑇 and zero spin, one finds 

 

𝛿Ω =A Bℏ%/𝑡*+% E(𝜏*+/ sinh 𝜏*+)
*+

𝑔*+ cos(𝑆*+/ℏ − 𝜇*+𝜋/2 + const)	, 

 
where 𝜏*+ = 𝜋𝑇𝑡*+/ℏ; 𝑡*+ = 𝜕𝑆*+/𝜕𝑒 is the period, 𝑆*+(𝑒) is the classical action, 𝜇*+ is the Maslov 
index, and 𝑔*+ is the single-particle level-density amplitude for the periodic orbit (PO) at the Fermi energy 
𝑒 = 𝑒,. For small temperatures 𝑇, one obtains 𝛿Ω → 𝛿𝐸. For large temperatures, 𝑇 ≳ 𝑇-. ≈ 𝐷-./𝜋 = (2 −
3) MeV, at large particle numbers 𝐴 = 100 − 200, one finds an  exponential decrease of shell effects. 
Here, the distance between major shells was evaluated semiclassically as 𝐷-. ≈ 2𝜋ℏ/𝑡*+ ≈ 𝑒,/𝐴#// =
(7 − 10) MeV. Fig. 2 shows  nice agreement of the MMA results [2] for the level density with experimental 
data for several deformed nuclei at low excitation energies. The MMA at low excitation energies clearly 
manifests an advantage over the standard Fermi gas asymptote (FG) [1] because of no divergences of the 
MMA in the limit of small excitation energies 𝑈. Another advantage takes place for 166Ho, which has a lot 
of states in the very low-energy range (cf. Fig. 2(b), and Fig. 2(a)). Shell effects of the MMA approach are 
important for   nuclei 166Ho and 240Pu, in contrast to the nucleus   150Sm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Level density, 𝐥𝐧𝝆, as function of the excitation energy 𝑼 in 
shown nuclei, obtained in the MMA approach (red solids) for the 
smallest critical error parameter of the least mean-square fit 𝝈 [2]. Blue 
dots present the results of the Fermi gas (FG) approach [1]. 
Experimental dots are obtained by the sample method from quantum 
spectra of the ENSDF database http://www.nndc.bnl.gov/ensdf, 
accounting for spin degeneracies of nuclear states. 
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The inverse level density parameter, 𝐾, was obtained by one-parametric fit of the MMA level 
densities 𝜌, taking into account the shell and neutron-proton asymmetry effects, with the experimental 
results for several chains of isotopes. We have found a significant shell effect in the parameter 𝐾 as function 
of the particle number 𝐴 for the nuclear low-energy states range within the POT. We emphasize the 
importance of the shell, neutron-proton asymmetry, and rotational effects in these calculations. Taking long 
Pt and Nd isotope chains as typical examples, one finds a saw-toothed behavior of 𝐾(𝐴) as function of the 
particle numbers	𝐴, and its remarkable shell oscillation. We obtained values of 	𝐾, that are significantly 
larger than those obtained for neutron resonances, due mainly to accounting for the shell effects. We show 
that the semiclassical POT is helpful in the low-energy states range for obtaining analytical shell-structure 
descriptions of the level density. The main part of the interparticle interaction is described in terms of the 
ETF counterparts of the statistically averaged nuclear potential, and of the level density parameter. Our 
MMA approach accounting for the spin dependence of the level density was extended to the collective 
rotations of deformed nuclei within the unified rotation model [2,3]. The well-known effects of the 
enhancement due to the nuclear collective rotations were found with accounting for the shell structure and 
neutron-proton asymmetry [3]. This approach might be interesting in the study of isomeric quasistationary 
states in strongly deformed nuclei at high spins. For perspectives, we suggest also to use our results for 
collective quantum spectra  in deformed rotating nuclei obtained  in the two-neutron transfer reactions (p,t), 
and for calculations of the fission widths. We may apply the MMA approach for metallic clusters and 
quantum dots, as well as for several problems in nuclear astrophysics. 
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